Аппаратная организация современного персонального компьютера. Аппаратные средства компьютеров

Системный блок представляет собой основной узел компьютера, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называются внутренними, а устройства, подключаемые к нему снаружи, внешними или периферийными. Внешними являются большинство устройств ввода-вывода и некоторые устройства, предназначенные для длительного хранения данных.

Внутренними устройствами являются:

материнская плата;

центральный процессор;

оперативная память;

жесткий диск;

видеокарта;

звуковая карта (интегрированная в материнскую плату либо подключаемая через интерфейсы);

дисковод компакт-дисков;

На материнской плате размещены:

набор микросхем, управляющих работой внутренних устройств компьютера;

шины - наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

постоянное запоминающее устройство - микросхема, предназначенная для хранения некоторых важных данных, когда компьютер выключен;

оперативное запоминающее устройство;

разъемы для подключения дополнительных устройств.

Центральный процессор -- электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса, используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода-вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Оперативная память -- энергозависимая часть системы компьютерной памяти, в которой временно хранятся входные, выходные и промежуточные данные программы процессора . Наиболее распространенные типы DIMM и SIMM .

Обмен данными между процессором и оперативной памятью производится:

непосредственно;

через сверхбыструю память 0-го уровня -- регистры в АЛУ , либо при наличии аппаратного кэша процессора -- через кэш.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. В режиме «гибернация» питание ОЗУ отключается. Для сохранения содержимого ОЗУ в таком случае , перед отключением питания, записывают содержимого ОЗУ в специальный файл, расположенный обычно на жёстком диске, или раздел жёсткого диска . Например, в ОС Windows XP это файл hiberfil.sys, в ОС семейства Unix -- специальный swap-раздел ).

В общем случае, ОЗУ содержит программы и данные ОС и запущенные прикладные программы пользователя и данные этих программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер под управлением ОС.

Жесткий диск - основное устройство долговременного хранения больших объемов данных и программ. Это группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, жесткий диск имеет несколько рабочих поверхностей. Над каждой поверхностью располагается головка чтения/записи. При высоких скоростях вращения дисков в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте нескольких тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности магнитного поля в зазоре, что вызывает изменение ориентации ферромагнитных частиц, образующих покрытие диска. При считывании данных намагниченные частицы, проходя вблизи головки, наводят в ней ЭДС самоиндукции. Возникающие при этом электрические сигналы усиливаются и обрабатываются. Управление работой жесткого диска выполняет специальное устройство - контроллер жесткого диска.

Твердотйльный накопитель (англ. solid-state drive, SSD) -- компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Различают два вида твердотельных накопителей: основанных на оперативной памяти, и основанных на флэш-памяти.

В настоящее время твердотельные накопители используются не только в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах, но могут быть использованы и в стационарных компьютерах для повышения производительности.

Существуют и так называемые гибридные жёсткие диски, появившиеся, в том числе, из-за текущей, пропорционально более высокой стоимости твердотельных накопителей. Такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления).

Для хранения данных, а также мультимедийной информации, используются компакт-диски (cd, dvd, blu-ray), которые вставляются в дисковод. Аббревиатура CD-ROM (Compact Disc Read-Only Memory) переводится как «постоянное запоминающее устройство на основе компакт-диска). Принцип действия компакт-диска состоит в изменении отражательной способности поверхности диска под действием лазерного луча. Основным параметром дисководов CD-ROM является скорость чтения данных.

DVD (Digital Versatile Disc -- цифровой многоцелевой диск) --носитель информации, выполненный в форме диска, имеющего такой же размер, как и компакт-диск, но более плотную структуру рабочей поверхности, что позволяет хранить и считывать больший объём информации за счёт использования лазера с меньшей длиной волны и линзы с большей числовой апертурой.

Blu-ray Disc, BD -- формат оптического носителя, используемый для записи с повышенной плотностью и хранения цифровых данных, включая видео высокой чёткости. Стандарт Blu-ray был совместно разработан консорциумом BDA. Первый прототип нового носителя был представлен в октябре 2000 года. Коммерческий запуск формата Blu-ray прошёл весной 2006 года.

Blu-ray (букв. «синий луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Буква «e » была намеренно исключена из слова «blue», чтобы получить возможность зарегистрировать товарный знак, так как выражение «blue ray» является часто используемым и не может быть зарегистрировано как товарный знак.

С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьёзный конкурент -- альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально поддерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers , последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD. Это событие положило конец очередной «войне форматов».

Видеокарта, электронное устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения - качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором -- графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (AGP, PCI Express). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты -- как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ; в этом случае устройство, строго говоря, не может быть названо видеокартой.

Звуковая карта (звуковая плата, аудиокарта; англ. sound card) -- дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека

  1. Фоули Р. Гоминиды как расселяющиеся животные
  2. Богатенков Д.В. Палеодемография (пример одной работы)
  3. Бужилова А.П. Сифилис в европе и колумб в америке: связаны ли эти события
  4. Медникова М.Б. Эпохальная изменчивость размеров тела человека: мифы и реальность
  5. Козловская М.В. Пищевые новации производящего хозяйства

АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА

Все ЭВМ, за небольшим исключением, имеют общую принципиальную схему или, как говорят, архитектуру.

Архитектура определяет принцип действия, информационные связи и взаимное соединение основных логических узлов ЭВМ:

§ центрального процессора;

§ периферийных процессоров;

§ оперативного ЗУ (запоминающего устройства);

§ внешних ЗУ;

§ периферийных устройств.

В основу архитектуры ЭВМ положен модульно-магистральный принцип. Модульный принцип позволяет комплектовать нужную конфигурацию, модернизировать её. Модульная организация опирается на магистральный (шинный) принцип обмена информацией. Обмен информацией между устройствами производится по 3-м многоразрядным шинам (многопроводные линии связи).

Принцип открытой архитектуры – это возможность постоянного усовершенствования компьютера IBM PC в целом и его отдельных частей с использованием новых устройств, которые полностью совместимы друг с другом независимо от фирмы-изготовителя. Это даёт наибольшую выгоду пользователям, которые могут расширять возможности своих машин, покупая новые устройства и вставляя их в свободные разъёмы (слоты) на системной (материнской) плате.

Общая структура персонального компьютера

Любой компьютер содержит:

1) Арифметико-логическое устройство (АЛУ);

2) Запоминающее устройство (память);

3) Управляющее устройство;

4) Устройство ввода-вывода информации (УВВ) и имеет программу, хранимую в его памяти (архитектура Джона фон Неймана).

К базовой конфигурации (составу оборудования) относятся:

1. Системный блок;

2. Монитор;

3. Клавиатура;

Всё, без чего можно обойтись при основной работе

за компьютером, относится к периферийному оборудованию:

1. Принтер;

2. Сканер;

3. Модем;

4. Колонки

Устройство системного блока.

Системный блок изготавливается в форме параллелепипеда, который может устанавливаться горизонтально или вертикально. Если корпус системного блока имеет горизонтальную конструкцию, то его используют как подставку для монитора. При вертикальной конструкции корпуса монитор располагается рядом. В некоторых моделях системный блок и монитор объединены.

На передней панели корпуса системного блока располагаются кнопки включения системного блока и установки некоторых режимов работы.

POWER- кнопка включения системного блока. На некоторых моделях системных блоков эта кнопка спрятана на заднюю панель.

RESET- кнопка "холодного" перезапуска компьютера. Позволяет перезагрузить компьютер в критических ситуациях, например, при "зависании" программ.

TURBO – кнопка переключения тактовой частоты т.е. изменения быстродействия компьютера. Рядом с этой кнопкой находится световое табло, высвечивающее значение тактовой частоты. В некоторых случаях при работе с программами, написанными для устаревших моделей компьютеров, требуется более низкая частота, которая устанавливается переключением этой кнопки.

На передней панели системного блока находится дисковод для одного или двух гибких дисков.

В системном блоке расположены основные части компьютера, управляющие работой всех остальных устройств. Внутри системного блока находятся:

ú центральный процессор или микропроцессор, управляющий работой всего компьютера;

ú постоянная память, в которой хранятся универсальные программы, обеспечивающие функционирование компьютера, и не исчезающие, после его выключения;

ú оперативная память, в которой хранятся и выполняются программы и данные в то время, пока работает компьютер;

ú адаптеры и контроллеры, управляющие работой периферийных устройств;

ú коммуникационные порты, обеспечивающие связь данного персонального компьютера с периферийными устройствами и с другими персональными компьютерами;

ú блок питания, подающий напряжение от сети к различным устройствам компьютера;

ú накопители или дисководы для гибких магнитных дисков;

ú накопитель на жестком магнитном диске или винчестер.

1. Материнская (системная)плата – самая большая в ПК плата, на которой размещены процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память (RAM), кэш-память, элемент ROM-BIOS (базовой системы ввода/вывода), аккумуляторная батарея, кварцевый генератор тактовой частоты, видеокарта, звуковая карта и другие устройства.

Указанные устройства подключаются к материнской плате через специальные разъёмы (слоты):

Общая производительность материнской платы определяется тактовой частотой и количеством (разрядностью) данных , обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

Архитектура материнских плат постоянно совершенствуется: увеличивается их функциональная насыщенность, повышается производительность. Стало стандартом наличие на материнской плате таких встроенных устройств, как двухканальный E-IDE-контроллер HDD (жёстких дисков), контроллер FDD (гибких (floppy) дисков), усовершенствованного параллельного (LPT) и последовательного (COM) портов, а также последовательного инфракрасного порта.

На материнской плате расположены:

1.1. Центральный процессор (центральное процессорное устройство – CPU) – мозг ЭВМ – основное устройство ПК, которое обрабатывает информацию, выполняют все вычисления и управляет работой компьютера.

Применительно к вычислительной технике под процессором понимают, обладающее способностью выбирать, декодировать и выполнять команды а также передавать и принимать информацию от других устройств.

Производство современных персональных компьютеров начались тогда, когда процессор был выполнен в виде отдельной микросхемы, выполняющей обработку информации.

Производительность CPU характеризуется следующими основными параметрами:

Степенью интеграции;

Внутренней и внешней разрядностью обрабатываемые данных;

Тактовой частотой;

Памятью, к которой может адресоваться CPU.

Степень интеграции микросхемы показывает, сколько транзисторов (самый простой элемент любой микросхемы) может поместиться на единице площади. Для процессора Pentium Intel эта величина составляет приблизительно 3 млн. на 3,5 кв.см, у Pentium Pro – 5 млн.

Внутренняя разрядность процессора определяет, какое количество битов он может обрабатывать одновременно при выполнении арифметических операций (в зависимости от поколения процессоров – от 8 до 32 битов).

Внешняя разрядность процессора определяет сколько битов одновременно он может принимать или передавать во внешние устройства (от 16 до 64 и более в современных процессорах). Тактовая частота определяет быстродействие процессора. Тактовая частота указывает, сколько элементарных операций (тактов) микропроцессор выполняет за одну секунду и является самой важной характеристикой процессора, связанной с его быстродействием(измеряется в МГц). Для процессора различают внутреннюю (собственную) тактовую частоту процессора (с таким быстродействием могут выполняться внутренние простейшие операции) и внешнюю (определяет скорость передачи данных по внешней шине).

Количество адресов ОЗУ, доступное процессору, определяется разрядностью адресной шины.

Количество фирм, разрабатывающих и производящих процессоры для IBM-совместимых компьютеров, невелико. В настоящее время известны: Intel, Cyrix, AMD, NexGen, Texas Instrument...

Фирма Intel является самым популярным производителем. _

Компания AMD является главным конкурентом Intel, т.к. производит около 80% процессоров с архитектурой IA32 (архитектура IA32 – Intel Architecture, 32-разрядная). Процессор Athlon – первый проект AMD, в котором она ото­шла от прямого копирования архитектур Intel и предложила рынку свой вариант платформы для PC. Процессор имеет кэш-­память объемом 128 Кбайт. Здесь реализован не только модуль ММХ, но и дополнительный набор инструкций, кото­рый обеспечивает более эффективную обработку графической информации. Фирма AMD создает и процессор Duron – конкурент процессора Celeron.

Кроме этих двух компаний, более простые и менее производи­тельные процессоры архитектуры IA32 выпускают также компании Rise и Centaur. Объем выпуска этих процессоров не велик – менее 1% рынка. Компьютеры Macintosh (настольные - iMac, PowerMac G4, PowerMac G4 Cube и ноут­буки - iBook, PowerBook G4) фирмы Apple существенно отличаются от IBM PC, хотя современному пользователю компьютера эти отличия и не очень заметны. В настоящее время в компьютерах Macintosh применяются два вида процессоров: G3, G4 компании Motorola и Power PC от IBM. Эти процессоры разрабатывались обеими фирмами совместно, ис­пользуя последние достижения технологии и учитывая опыт ис­пользования других процессоров. В результате получился очень эффективный процессор, который при равной частоте с процес­сорами Intel обеспечивает большую производительность. Но, пока частота работы процессоров G3, G4 и Power PC ниже.

1.2. Внутренняя память компьютера.

Память компьютера предназначена для хранения информации. В компьютере имеются два вида памяти: внутренняя и внешняя. Внутренняя память расположена в системном блоке. У компьютера есть три вида внутренней памяти: постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ), кэш-память и видеопамять.

1.2.1. Оперативная память (по-английски – Random Acces Memory или RAM, что переводится как "память с произвольной выборкой") - быстродействующая память ПК, хранящая информацию при включенном питании. Работа компьютера с пользовательскими программами начинается после того как данные будут считаны из внешней памяти в ОЗУ . Центральный процессор имеет доступ к данным, находящимся в оперативной памяти. ОЗУ работает синхронно с центральным процессором и имеет малое время доступа. Оперативная память сохраняет данные только при включенном питании. При выключении источника питания информация в ОЗУ не сохраняется (разрушается). Отключение питания приводит к необратимой потере данных, поэтому пользователю, работающему с большими массивами данных в течение длительного времени, рекомендуют периодически сохранять промежуточные результаты на внешнем носителе

Основой ОЗУ являются микросхемы памяти (chips), которые объединяются в блоки (банки) различной конфигурации. Для нормального функционирования системы большое значение имеет согласование быстродействия центрального процессора и ОЗУ. Оперативная память бывает: SIMM (Single In-Line Memory Module) и DIMM (Dual In-Line Memory Module).

Функции оперативной памяти:

ú приём информации от других устройств;

ú запоминание информации;

ú передача информации по запросу в другие устройства машины.

Объем оперативной памяти - один из важнейших параметров, опреде­ляющих скорость работы программных средств ПК. Необходимым объемом сегодня является 64 Мб и выше, однако, для эффективной работы новейшего ПО требования к объему оперативной памяти возрастают. Оперативная память выпускается модулями стандартных размеров по 16, 32, 64, 128, 256, 512 Мб и более. На материнской плате, как правило, есть не­сколько разъемов для модулей памяти, что предполагает возможность наращивания объема оперативной памяти.

Машины с процессором 286 имеют в среднем размер ОЗУ 1 – 2 Мб, 386 – 2–8 Мб, 486 – 8–16 Мб, Pentium и Р6 – 16– 2 Мб, Рentium 2 и Рentium 3 – 32 –128 Мб, Рentium4 – 64 – 256 Мб.

1.2.2. В постоянной памяти (ПЗУ-BIOS или CMOS Setup) – по-английски Read-Only Memory- ROM что означает "память только для чтения" – хранится программа BIOS (Basic Input/Output System), что переводится на русский язык как Базовая система ввода-вывода . Эта программа обеспечивает при включении компьютера тестирование его основных узлов и загрузку операционной системы. BIOS находится в постоянной памяти компьютера и недоступна произвольным действиям пользователя. Без этой программы не начнет своей работы ни один компьютер. Данные в ПЗУ занесены при изготовлении.

Для ускорения доступа к оперативной памяти используется специальная сверхбыстродействующая КЭШ-память , которая располагается как бы «между» микропроцессором и оперативной памятью. Это сверхоперативная сверхскоростная промежуточная память. КЭШ устраняет простои процессора, так как скорость обмена процессора с КЭШ в несколько раз выше, чем с ОЗУ. Наличие КЭШ в 256 Кб может увеличить производительность ПК на 20%. Размер КЭШ-памяти составляет от 64 Кб до 512 Кб. В ней хранятся копии наиболее часто используемых участков оперативной памяти.

Микропроцессоры Pentium Pro содержат кэш-память в едином корпусе с микропроцессором.

Энерго­независимая CMOS - память – CMOS RAM (Complementary Metal-Oxide Semi­conductor RAM), постоянно питающаяся от своего аккумулятора, хранят параметры конфигурации компьютера, которые проверяются при каждом включении системы. Это полупостоянная память.

Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера – SETUP .

Еще один вид памяти – видеопамять , т.е. память, используемая для хранения изображения, выводимого на экран монитора. Это специальная оперативная память, в которой формируется графическое изображение. Чаще всего её величина от 512Кб до 4 Мб для самых лучших ПК при реализации 16,7 млн. цветов. Эта память обычно входит в состав видеоконтроллера.

1.3 Видеоадаптер (графический адаптер) - плата, выполняющая вес опе­рации, связанные с управлением экраном (монитором) компьютера.

Характеристики:

· Разрешение , которое указывает на коли­чество точек на экране по горизонтали и вертикали для отображения информации. Стандартными значениями для разрешения являются 800x60 или 1024x768.

· Современные видеоадаптеры могут выполнять функции обработки изображений, для этого они имеют собственную видеопамять . Типовым объемом видеопамяти в настоящее время счита­ется объем от16 до 512 Мб.

1.4 Звуковая карта (саундбластер) – специальная плата, выполняющая операции по обра­ботке звука. К выходу саундбластера подключают колонки или наушники.. Для записи звука имеется разъем, позво­ляющий подключить микрофон.

Основной параметр – разрядность, определяющая количество битов, используемых для кодирования звука. Предпочтительным вариантом сегодня считает­ся 32-разрядная звуковая карта.

Аппаратные средства ПК

Студента СПБГУТД

Группа № 1-ЭД-2 «В»

Меркоева Дмитрия

Санкт-Петербург

Введение……………………………………………………….3

Конфигурация персонального компьютера.......................3

Материнская плата…………………………………………..5

BIOS …………………………………………………………….6

IBM PC и принцип открытой архитектуры……………….8

Введение

В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в1971 г. произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том вне всякого сомнения знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем - персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до маститых ученых и инженеров. Этим машинам, не занимающим и половины поверхности обычного письменного стола, покоряются все новые и новые классы задач, которые ранее были доступны (а по экономическим соображениям часто и недоступны - слишком дорого тогда стоило машинное время мэйнфреймов и мини-ЭВМ) лишь системам, занимавшим не одну сотню квадратных метров. Наверное, никогда прежде человек не имел в своих руках инструмента, обладающего столь колоссальной мощью при столь микроскопических размерах.

У персонального компьютера есть два важных преимущества по сравнению со всеми другими видами компьютеров: он имеет относительно простое управление и может решать достаточно широкий класс задач.

Если ранее на ЭВМ могли в основном работать только профессиональные программисты (практически для любой задачи приходилось создавать свою программу), то теперь ситуация коренным образом изменилась. В настоящее время разработаны десятки тысяч программ по всем областям знаний. С ними работают десятки миллионов квалифицированных пользователей.

Согласно статистическим данным, самыми распространенными и используемыми программами являются операционные системы и текстовые редакторы.

Знание характеристик компьютерных устройств поможет квалифицированному пользователю выбрать оптимальную конфигурацию персонального компьютера для решения поставленной практической задачи.

Конфигурация персонального компьютера

Персональными называются компьютеры, на которых может одновременно работать только один пользователь. Персональные компьютеры имеют только одно рабочее место.

Под термином «конфигурация» компьютера понимают список устройств, входящих в его состав.

В соответствие с принципом открытой архитектуры аппаратное обеспечение компьютеров (Hardware) может быть весьма различным. Но любой персональный компьютер имеет обязательный и дополнительный набор устройств.

Обязательный набор устройств:

· Монитор - устройство вывода текстовой и графической информации.

· Клавиатура - устройство для ввода текстовой информации.

· Системный блок - объединение большого количества различных компьютерных устройств.

В системном блоке находится вся электронная начинка компьютера. Основными деталями системного блока являются:

· Процессор - главное компьютерное устройство управления и проведения вычислений.

· Материнская плата - устройство для крепления на ней других внутренних компьютерных устройств.

· Оперативная память (ОЗУ) - устройство для хранения программы и данных во время ее работы в компьютере.

· Постоянное запоминающее устройство (ПЗУ) - устройство для постоянного хранения некоторых специальных программ и данных.

· Кэш память - сверхбыстрая память для хранения особо важной информации.

· Сопроцессор - устройство для выполнения операций с плавающей запятой.

· Видеокарта - устройство, обеспечивающее вывод информации на монитор.

· Флоппи дисковод - устройство для хранения и переноса информации между ПК.

· Винчестер - основное устройство для хранения информации на компьютере.

· Блок питания - устройство для распределения электрической энергии между другими компьютерными устройствами.

· Контроллеры и шина - предназначены для передачи информации между внутренними устройствами ПК.

· Последовательные и параллельные порты - предназначены для подключения внешних дополнительных устройств к компьютеру.

· Корпус - предназначен для защиты материнской платы и внутренних устройств компьютера от повреждений.

Дополнительные устройства, которые можно подключать к компьютеру:

· Принтер - предназначен для вывода текстовой и графической информации на бумагу.

· Дисковод для компакт дисков (CD ROM) - для работы с компакт дисками.

· Дисководы DVD - современные устройства для работы с носителями данных объемом до 17 Гбайт.

· Звуковая карта - устройство для работы со звуковой информацией.

· Мышь - манипулятор для ввода информации в компьютер.

· Джойстик - манипулятор для передачи информации о движении в компьютер.

· Планшет - устройство для работы с компьютерной графикой.

· TV тюнер является устройством, позволяющим ПК принимать и показывать программы телевидения.

· Колонки - внешние устройства для воспроизведения звуков.

· Факс-модем - устройство для связи между компьютерами через телефонную линию.

· Плоттер - устройство для вывода чертежа на бумагу.

· Сканер - для ввода графических изображений в компьютер.

· Ленточные накопители - устройства для проведения резервного копирования данных на магнитную ленту.

· Источник бесперебойного питания - устройство защиты компьютера от перебоев в электроснабжении.

· Накопители на съемных дисках - устройства, в будущем заменяющие флоппи дисководы.

· Графический акселератор - устройство для ускорения обработки и вывода трехмерной графики.

и многое другое...

Для обозначения конфигурации конкретного персонального компьютера применяют записи стандартного типа. Разберем ее на примере:

Pentium II - 333/ 64 Sdram / 3.1Gb / ATI 3D Char 4 Mb / Mini / CD ROM 24X + SB 16 ESS68

Итак, что это за компьютер? Вначале пишется тип процессора - Pentium II с тактовой частотой 333 МГц. Далее обозначен объем и тип оперативной памяти - 64 Мбайта. В ПК встроен винчестер объемом 3.1 Гбайт. Используется видеокарта ATI 3D Char c 4 Мбайтами видеопамяти, видеокарта оптимизирована для работы с трехмерной графикой 3D. Корпус MiniTower. Также в состав ПК входит 24-скоростной дисковод для компакт дисков и простая звуковая карта Sound Blaster. В стандартную конфигурацию компьютера всегда входит 3.5 дюймовый флоппи-дисковод, поэтому он в записи не указывается. Мышь также входит в стандартную конфигурацию. Но монитор совместно с данным комплектом не продается. Его необходимо покупать отдельно. Общий итог - данный компьютер имеет минимальную стандартную конфигурацию для использования в офисе и дома весной 1999 г.

Материнская плата

Материнская плата (Mother board) является основной платой компьютера, т.к. именно на ней крепятся все компьютерные устройства, например, процессор, звуковая карта и т.д.

Материнские платы собираются на основе специального набора микросхем, называемого Chipset.В зависимости от типа устанавливаемого процессора, необходимо использовать различные chipsetы, и получать, т.о. материнские платы разных типов.

Так, для 486 процессоров существовал специальный тип 486 материнских плат. Для процессоров Pentium использовались два вида плат: первый для процессоров с тактовой частотой 60 и 66 МГц, а второй - для всех остальных. Для последующих типов процессоров также необходимо использовать соответствующие системные платы. Так, например, для процессора Celeron используется плата на наборе микросхем 443EX.

Самым популярным производителем материнских плат в России считается фирма Asustek. Хотя на практике можно использовать компьютеры с материнской платой различных производителей. Например, A-Bit, A-Trend, Giga - Byte и другие.

Последней разработкой в области системных плат для настольных ПК стала технология NLX, и, воз­можно, именно она окажется ведущей технологией ближайшего будущего. Платы этого стандарта, на пер­вый взгляд, напоминают платы LPX, но на самом деле они значительно усовершенствованы. Если на пла­ты LPX нельзя установить самые новые процессоры из-за их более крупных размеров и повышенного тепловыделения, то в разработке NLX эти проблемы прекрасно разрешены. Вот каковы основные преимущества этого нового стандарта, перед остальными.

Поддержка современных процессорных технологий. Это особенно важно для систем с процессором Pentium II, поскольку размер его корпус Single Edge Contact (т.е. корпуса, с единственным рядом расположенных по периметру контактов) практически не позволяет устанавливать этот процессор на платах Baby-AT и LPX. И хотя некоторые производители системных плат все же предлагают АТХ-системы на основе Pentium II, на их платах остается место только для двух 72-контактных разъемов модулей SIMM!

Гибкость по отношению к быстро изменяющимся процессорным технологиям. Идея гибких систем с объединительной платой нашла новое воплощение в конструкции плат NLX, установить которые можно быстро и легко, не разбирая при этом всю систему на части. Но в отличие от традиционных систем с объединительными платами, у нового стандарта NLX есть поддержка таких лидеров ком­пьютерной индустрии, как AST, Digital, Gateway, Hewlett-Packard, IBM, Micron, NEC и другие.

Поддержка других новых технологий. Речь здесь идет о таких высоко производительных решениях, как AGP (Accelerated Graphics Port - ускоренный графический порт), USB (Universal Serial Bus - универсальная последовательная шина), технологии больших модулей памяти и DIMM. А в ответ на всевозрастающую роль мультимедиа-приложений разработчики встроили в новую системную плату еще и поддержку таких возможностей, как проигрывание назад видеоролика, расширенные графика и звук. И если в прошлом использование мультимедиа-технологий означало дополнительные затра­ты на различные дочерние платы, то теперь необходимость в них отпала.

Системная плата NLX и платы ввода-вывода (располагающиеся, как и в конструкции LPX, параллель­но системной) теперь легко вставляются и вынимаются, при этом другие платы, в том числе и располо­женные вертикально, остаются нетронутыми. Легче добраться и до самого процессора, который охлажда­ется теперь гораздо лучше, чем в системах с тесно расположенными компонентами. Поддержка плат рас­ширения различного размера позволяет выпускать системы различных модификаций.

Стандарт NLX обеспечивает максимальную гибкость систем и самое оптимальное использование сво­бодного пространства. Даже самые длинные платы ввода-вывода устанавливаются без труда и не задевают при этом никаких других системных компонентов, что было настоящей проблемой для компьютеров типа Baby-AT.

BIOS - Базовая система ввода-вывода (Basic Input Output System) называется так потому, что включает в себя обширный набор программ ввода-вывода, благодаря которым операционная система и прикладные программы могут взаимодействовать с различными устройствами как самого компьютера, так и подключоными к нему. Вообще говоря, в PS система BIOS занимает особое место. С одной стороны, ее можно рассматривать как составную часть аппаратных средств, с другой стороны, она является как бы одним из програмных модулей операционной системы. Сам термин BIOS, видимо, заимствован из операционной системы CP/M, в которой модуль с подобным названием был реализован програмно и выполнял примерно подобные действия.

Большинство современных видеоадаптеров, а также контроллеры накопителей имеют собственную систему BIOS, которая обычно дополняет системную. Во многих случаях программы, входящие в конкретную BIOS, заменяют соответствующие програмные модули основной BIOS. Вызов программ BIOS, как правило, осуществляется через програмные или аппаратные прерывния.

Система BIOS помимо программ взаимодействия с аппаратными средствами на физическом уровне содержит программу тестирования при включении питания компьютера POST (Power–On-Self-Test, Самотестирование при включении питания компьютера). Тестируются основные компоненты, такие как процкссор, память, вспомогательные микросхемы, приводы дисков, клавиатуру и видеоподсистему. Если при включении питания компьютера возникают проблемы (BIOS не может выполнить начальный тест), вы услышите последовательность звуковых сигналов:

Если вы сталкиваетесь с чем-либо подобным, существует высокая вероятность того, что эта проблема связана с аппаратными средствами.

Система BIOS в PS реализована в виде одной микросхемы, установленной на материнской плате компьютера.Название ROM BIOS в настоящее время не совсем справедливо, ибо «ROM» - предполагает использование постоянных запоминающих устройств (ROM - Read Only Memory), а для хранения кодов BIOS в настоящее время применяются в основном перепрограммируемые (стираемые электрически или с помощью ультрафиолетового излучения) запоминающие устройства. Мало того, наиболее перспективным для хранения системы BIOS является сейчас флэш-память. Это позволяет легко модифицировать старые или добавлять дополнительные функции для поддержки новых устройств, подключаемых к компьютеру.

Поскольку содержимое ROM BIOS фирмы IBM было защищено авторским правом, то есть его нельзя подвергать копированию, то большинство других производителей компьютеров вынуждены были использовать микросхемы BIOS независимых фирм, системы BIOS которых, разумеется, были практически полностью совместимы с оригиналом. Наиболее известные из этих фирм три: American Megatrends Inc. (AMI), Award Software и Phoenix Technologies. Заметим, что конкретные версии BIOS неразрывно связаны с набором микросхем (chipset), используемым на системной плате. Кстати, компания Phoenix Technologies считается пионером в производстве лицензионно-чистых BIOS. Именно в них впервые были реализованы такие функции, как задание типа жесткого диска, поддержка привода флоппи-дисков емкостью 1,44 Мбайта и т.д. Более того, считается, что процедура POST этих BIOS имеет самую мощную диагностику. Справедливости ради надо отметить, что BIOS компании AMI наиболее распространены. По некоторым данным, AMI занимает около 60% этого сегмента рынка. Кроме того, из программы Setup AMI BIOS можно вызвать несколько утилит для тестирования основных компонентов системы и работы с накопителями. Однако при их использовании особое внимание следует обратить на тип интерфейса, который использует привод накопителя.

Система BIOS в компьютерах, неразрывно связана с SMOS RAM. Под этим понимается «неизменяемая» память, в которой хранится информация о текущих показаниях часов, значении времени для будильника, конфигурации компьютера: количестве памяти, типах накопителей и т.д. Именно в этой информации нуждаются программные модули системы BIOS. Своим названием SMOS RAM обязана тому, что эта память выполнена на основе КМОП-струкгур (CMOS-Complementary Metal Oxide Semiconductor), которые, как известно, отличаются малым энергопотреблением. Заметим, что CMOS-память энергонезависима только постольку, поскольку постоянно подпитывается, например, от аккумулятора, расположенного на системной плате, или батареи гальванических элементов, как правило, смонтированной на корпусе системного блока.Большинство системных плат допускают питание CMOS RAM как от встроенного, так и от внешнего источника.

В случае повреждения микросхемы CMOS RAM (или разряде батареи или аккумулятора) программа Setup имеет возможность воспользоваться некой информацией по умолчанию (BIOS Setup Default Values), которая хранится в таблице соответствующей микросхемы ROM BIOS. Кстати, на некоторых материнских платах питание микросхемы CMOS RAM может осуществляться как от внутреннего, так и от внешнего источника. Выбор определяется установкой соответствующей перемычки.

Программа Setup поддерживает установку нескольких режимов энергосбережения, например Doze (дремлющий), Standby (ожидания, или резервный) и Suspend (приостановки работы). Данные режимы перечислены в порядке возрастания экономии электроэнергии. Система может переходить в конкретный режим работы по истечении определенного времени, указанного в Setup. Кроме того, BIOS обычно поддерживает и спецификацию АРМ (Advanced Power Management). Как известно, впервые ее предложили фирмы Microsoft и Intel. В их совместном документе содержались основные принципы разработки технологии управления потребляемой портативным компьютером мощностью.

Задание полной конфигурации компьютера осуществляется не только установками из программы Setup, но и замыканием (или размыканием) соответствующих перемычек на системной плате. Назначение каждой из них указано в соответствующей документации.

IBM PC и принцип открытой архитектуры

Принцип открытой архитектуры гласит, что компьютеры собираются из комплектующих, созданных в соответствии с определенными стандартами. Данные стандарты опубликованы и информационно доступны. При этом пользователь имеет возможность самостоятельно вставлять в ПК платы самых разных фирм - производителей и адаптировать свой персональный компьютер к требуемой деятельности.

До появления персональных компьютеров IBM PC все другие модели были основаны на принципе «закрытой архитектуры», т.е. все аппаратные средства были для конечного пользователя «вещью в себе». После того, как заканчивалась сборка аппарата, он «был обречен на необратимое старение». Если с производства снималась хоть одна деталь, систему можно было выбрасывать.

То, что IBM PC стали стандартом персональных машин связано с его очень удачной конструкцией. Компьютеры IBM могут быть созданы из независимо изготовленных частей аналогично детскому конструктору. Если работа любой детали вас не устраивает, ее вынимают и заменяют другой. Ранее, если какая-нибудь деталь снималась с производства, надо было выбрасывать весь прибор. Для IBM PC есть десятки предложений по замене. Компьютеры IBM PC созданы в соответствие с принципом открытой архитектуры

Достоинства принципа открытой архитектуры можно рассмотреть на следующем примере: Пусть у нас есть простой монофонический плеер. Мы покупаем и вставляем в него устройство для записи звука. В результате получаем монофонический магнитофон. Добавляем вторую колонку и слушаем стерео. Подключаем FM тюнер и получаем магнитолу. Далее осталось сделать еще один шаг и в результате вместо старого плеера мы имеем - двух кассетную стерео магнитолу. Просто в дополнение к прежним деталям мы докупили несколько новых и соединили их вместе. К сожалению, на практике с магнитофонами данный подход не работает, но с компьютерами все обстоит намного лучше.

Лекция 2. Технические средства компьютерной графики

Общие сведения о компьютерах, используемых для обработки графической информации

Технические средства и программное обеспечение (ПО) являются инструментальной средой графической системы. Они образуют физическую среду, в которой реализуются математические методы, алгоритмы, математические модели в рамках специального ПО компьютерной графики.

Пользователь (инженер, дизайнер, художник, редактор) взаимодействует с этой средой и, используя средства компьютерной графики, создает графические объекты различной сложности. Технические средства и общесистемное ПО реализуют различные, но взаимосвязанные функции по созданию графической информации, ее преобразованию, хранению и выводу.

С помощью технических средств компьютерной графики решают следующие задачи:

Ввод исходной графической информации;

Оперативный диалог пользователя с графической системой;

Преобразование графической информации;

Хранение графической информации в различных форматах;

Отображение графической информации;

Документирование графической информации.

Основу технических средств компьютерной графики, решающих перечисленные задачи, составляют вычислительные системы, включающие процессоры, оперативную память, внешние запоминающие устройства, устройства ввода графической информации, устройства вывода графической информации, устройства взаимодействия пользователя с компьютером, телекоммуникационные и сетевые устройства. Перечисленные задачи компьютерно-технических средств решаются совместно с общесистемным ПО.

Чаще всего, после того, как изображение возникло на мониторе, пользователь каким-либо образом должен взаимодействовать с ним: модифицировать, передвигать, управлять. Для этого существует ряд устройств, о которых будет рассказано ниже.

Классификация компьютеров

Компьютеры можно классифицировать по различным признакам. Компьютеры, используемые для обработки графической информации можно разделить на две группы – универсальные (общего назначения) и специализированные. Большинство компьютеров, оперирующих с графической информацией, относятся к универсальным, а специализированные компьютеры предназначены для решения узкого круга сложных задач компьютерной графики. Примером специализированных графических компьютеров может служить многопроцессорный суперкомпьютер Onyx 4 Ultimate Vision фирмы Silicon Graphics, содержащий от 2 до 64 центральных процессоров и от 2 до 32 графических процессоров.

Многие современные суперкомпьютеры созданы по кластерной технологии (англ. cluster – скопление). По этой технологии компьютер строится из нескольких десятков вычислительных машин, связанных между собой и функционирующих как единая система. Кластерные суперкомпьютеры легко масштабируются и позволяют получать высокое быстродействие и высокую готовность.

Одним из наиболее ранних методов классификации компьютеров является классификация по назначению. В данном случае учитывается, для решения какого рода задач компьютер применяется. Также существует классификация компьютеров по типоразмерам, по уровню специализации и др.

Мэйнфреймы (от англ. mainframe) – высокопроизводительные компьютеры с большими вычислительными ресурсами, способные решать сложные задачи, обрабатывать большие объемы данных и выполнять обработку нескольких тысяч запросов одновременно.

Конструктивно мэйнфреймы выполняются в едином корпусе в форме шкафа или тумбы (отсюда и их название), к которому могут подключаться многочисленные терминалы (рис. 2.1). Как правило, мэйнфреймы отличаются очень высокой надежностью.

Рис. 2.1. Мэйнфрейм корпорации IBM

Мэйнфреймы обычно используют для хранения и обработки больших баз данных, а также для создания крупных web-узлов с большим количеством клиентов.

Серверы (от англ. server – обслуживающий)компьютеры, которые в вычислительных сетях являются центральными управляющими и информационными узлами. На серверах хранится большое количество информации, в том числе и графической, которую могут использовать все компьютеры, подключенные к сети, в зависимости от их статуса (Рис. 2.2).

Сервер определяет работоспособность всей сети, сохранность баз данных и другой информации, поэтому серверы имеют систему хранения данных, отличающуюся большой емкостью и высокой надежностью, возможность замены неисправных блоков при непрерывной работе (т.н. «горячая» замена).

Рис. 2.2. Сервер Dell

Персональные рабочие станции - графические рабочие станции, выполненные на вычислительной платформе, используемой в персональных компьютерах, как правило, это платформа WINTEL. Вычислительная платформа - совокупность центрального процессора (в данном случае - микропроцессор фирмы Intel) и операционной системы (ОС) (в этом случае - вариант ОС Windows корпорации Microsoft).

Рис. 2.3. Рабочая станция HP

Обычно в качестве персональных рабочих станций используются высокопроизводительные персональные компьютеры, укомплектованные дополнительными периферийными устройствами в зависимости от назначения станции (Рис. 2.3).

Персональные компьютеры (ПК) (англ. personal computer, PC) - компьютеры, предназначенные для индивидуального использования одним пользователем автономно или в сети совместно с другими компьютерами. Персональные компьютеры бывают настольные, переносные и карманные.

Персональные настольные компьютеры предназначены для работы в лабораторных условиях, в офисе, кабинете или комнате. Их располагают непосредственно на рабочем месте, обычно на столе, в соответствии с их названием. Это наиболее распространенные компьютеры, составляющие большую часть всех компьютеров в мире. Настольные персональные компьютеры в зависимости от их возможностей и назначения можно разделить на профессиональные, офисные, учебные и бытовые.

Рис. 2.4. Персональный настольный компьютер

Как правило, конструктивно настольные компьютеры и рабочие станции состоят из центральной части - системного блока, и монитора, клавиатуры и мыши, подключенных к системному блоку. Конструктивное оформление системного блока отличается большим разнообразием - от классического горизонтального или вертикального до самых экзотических решений дизайнеров (Рис. 2.4). В некоторых моделях ПК монитор и системный блок могут быть совмещены.

Переносные (мобильные) персональные компьютеры широко используются наравне с настольными компьютерами. Современные переносные компьютеры часто называют ноутбуками (от англ. notebook). Ноутбук функционально аналогичен настольному ПК и часто не уступает ему по техническим параметрам. В ноутбуках используется такое же программное обеспечение, что и в настольных ПК. Основная особенность ноутбука - возможность автономной работы с питанием от встроенного аккумулятора. Это позволяет использовать ноутбук в различных условиях при отсутствии питающей сети. Конструктивно ноутбук содержит жидкокристаллический дисплей, клавиатуру, совмещенную с системным блоком, жесткий диск и оптический дисковод (CD-ROM, CD-RW или DVD-RW). Рядом с клавиатурой размещается манипулятор (сенсорная панель) для управления курсором. Размеры ноутбуков соответствуют портфелю или небольшой сумке (Рис. 2.5).

Рис. 2.5. Переносной персональный компьютер (ноутбук)

Изначально, широкое распространение ноутбуков сдерживалось их высокой стоимостью по сравнению с настольными компьютерами, однако по мере развития технологии изготовления для них комплектующих их стоимость снижалась, что обусловило повышение спроса и интенсивное развитие их производства. В настоящее время все основные производители настольных компьютеров предлагают большое число моделей ноутбуков, отличающихся функциональными возможностями и стоимостью.

Карманные (или наладонные) переносные компьютеры (КПК) помещаются на ладони или в кармане. КПК также называют наладонниками(англ. palmtop). Кроме палмтопов существуют карманные компьютеры, которые называют PDA (англ. personal digital assistent). Общее название карманных компьютеров - handhold computers - компьютеры, которые держат в руках (Рис. 2.6).

Рис. 2.6. Специализированный карманный компьютер

Все карманные компьютеры в зависимости от наличия клавиатуры делятся на две большие группы: КПК с клавиатурой и КПК без клавиатуры. КПК с клавиатурой внешне похожи на ноутбук, уменьшенный до карманных размеров. КПК без клавиатуры оснащены сенсорным экраном и информация вводится на экран при помощи специальной указки - стилуса, при этом может использоваться экранная клавиатура или написание символов стилусом непосредственно на экране.

В карманных компьютерах программы хранятся в микросхемах энергонезависимой памяти. В набор программ обычно входит операционная система, текстовые и графические редакторы, системы баз данных, электронные таблицы и интернет-браузеры. Эти компьютеры позволяют обрабатывать документы, работать с базами данных, производить вычисления, читать электронные книги, слушать музыку, просматривать фильмы и работать в Интернете.

К данной группе также можно отнести смартфоны (англ. smartphone – умный телефон). Это устройства, сочетающие в себе некоторые функции карманных компьютеров и мобильных телефонов (Рис. 2.7).

Каждый тип компьютера обладает определенными функциональными возможностями обработки графической информации. Все возможности компьютера реализуются совместно программными и аппаратными средствами и должны органично сочетаться с возможностями пользователя. Разделение функций между аппаратными и программными средствами компьютера направлено на повышение его эффективности при решении различных задач.

Аппаратные средства персональных компьютеров

Персональный компьютер – универсальное устройство. Его конфигурацию (состав оборудования) можно изменять по мере необходимости. Тем не менее, существует базовая конфигурация, которую считают типовой. В этой конфигурации компьютер обычно поставляется пользователю. В настоящее время в базовой конфигурации рассматривают четыре устройства:

· системный блок;

· монитор;

· клавиатура;

Системный блок

Системный блок – основное устройство компьютера. Внутри него находиться целый ряд важнейших компонентов. По способу размещения устройств относительно системного блока их делят на внешние (периферийные) и внутренние (центральные).

К центральным устройствам, непосредственно участвующим в обработке данных, относятся центральный процессор, оперативная память, графический процессор и подсистема ввода-вывода. Эти устройства расположены внутри системного блока.

К периферийным относятся устройства, реализующие функции ввода, вывода, подготовки данных и хранения больших объемов информации. Общим для всех периферийных устройств является то, что они преобразуют форму представления данных без изменения их содержания. Такие устройства подключаются к системному блоку снаружи через различные разъемы и порты.

Рис. 2.8. Корпус ПК в горизонтальном и вертикальном исполнении

По внешнему виду системные блоки различаются формой корпуса. Корпуса компьютеров выпускают в горизонтальном исполнении (desktop) и в вертикальном (tower) (Рис. 2.8). Корпуса в вертикальном исполнении различают по габаритам: полноразмерный (full tower), средний (midi tower) и малый (mini tower). Среднеразмерные корпуса в вертикальном исполнении весьма популярны в сфере бытового использования.


Похожая информация.


Для обеспечения максимальной производительности и корректной работы используют аппаратные и программные средства, которые очень связаны между собой и четко взаимодействуют в разных направлениях. Сейчас коснемся рассмотрения аппаратных средств, поскольку изначально именно они занимают главенствующее положение в обеспечении работоспособности любой компьютерной или даже мобильной системы.

Аппаратные средства систем: общая классификация

Итак, с чем же мы имеем дело? На самом деле комплекс аппаратных средств знаком всем и каждому. По сути, многие пользователи называют его компьютерным «железом». Действительно, аппаратные средства - это именно «железные», а не программные компоненты любой компьютерной системы. В самом простом варианте классификации они разделяются на внутренние и внешние.

Кроме того, в таком разделении можно выделить три основных и наиболее содержательных класса устройств:

  • устройства ввода;
  • устройства вывода;
  • устройства хранения информации.

Естественно, отдельно стоит отметить и главные элементы компьютерных систем вроде материнской платы, процессора и т. д., не входящие ни в один из вышеперечисленных классов и являющиеся базовыми элементами, без которых ни один компьютер попросту работать не будет.

Базовые элементы компьютера

Описывая аппаратные средства любого компьютера, начать стоит с самого главного элемента - материнской платы, на которой расположены все внутренние элементы. И к ней же за счет применения разного рода разъемов и слотов подключаются внешние устройства.

Сегодня существует достаточно много разновидностей «материнок» и их производителей. Правда, такие платы для стационарных компьютеров и ноутбуков и по форме, и по расположению отдельных элементов могут различаться. Тем не менее суть их применения в компьютерных системах не меняется.

Второй по важности элемент - центральный процессор, который отвечает за быстродействие. Одной из главных характеристик является тактовая частота, выраженная в мега- или гигагерцах, а проще говоря, величина, определяющая, сколько элементарных операций может производить процессор за одну секунду. Нетрудно догадаться, что быстродействие есть не что иное, как отношение количества операций к числу тактов, которое необходимо для выполнения (вычисления) одной элементарной операции.

Аппаратные средства компьютера невозможно себе представить без планок оперативной памяти и жестких дисков, которые относятся к устройствам хранения. О них будет сказано несколько позже.

Программно-аппаратные средства

В современных компьютерах применяются и устройства гибридного типа, такие, например, как ПЗУ или постоянная энергонезависимая память CMOS, которая является основой базовой системы ввода/вывода, называемой BIOS.

Это не только «железный» чип, распложенный на материнской плате. В нем имеется собственная микропрограмма, позволяющая не только хранить неизменяемые данные, но и проводить тестирование внутренних компонентов и в момент включения компьютера. Наверное, многие владельцы стационарных ПК замечали, что в момент включения слышен сигнал системного динамика. Это как раз и свидетельствует о том, что проверка устройств прошла успешно.

Средства ввода информации

Теперь остановимся на устройствах ввода. На данный момент их разновидностей можно насчитать достаточно много, а судя по развитию IT-технологий, вскоре их станет еще больше. Тем не менее базовыми в этом списке принято считать следующие:

  • клавиатура;
  • мышь (трекпад для ноутбуков);
  • джойстик;
  • цифровая камера;
  • микрофон;
  • внешний сканер.

Каждое из этих устройств позволяет ввести разный тип информации. К примеру, с помощью сканера вводится графика, с помощью камеры - видеоизображение, на клавиатуре - текст и т. д. Однако и мышь, и трекпад в дополнение ко всему являются еще и контроллерами (манипуляторами).

Что касается клавиатуры, контролирующие функции в ней используются через кнопки или их сочетания. При этом можно получить и доступ к определенным функциям, параметрам и командам операционных систем или другого программного обеспечения.

Средства вывода информации

Аппаратные средства невозможно представить себе и без устройств вывода. В стандартном списке присутствуют следующие:

  • монитор;
  • принтер;
  • плоттер;
  • звуковая и видеосистема;
  • мультимедийный проектор.

Здесь основным является компьютерный монитор или экран ноутбука. Понятно ведь, что при современных методах объектно-ориентированного программирования взаимодействие с пользователем осуществляется через графический интерфейс, хотя в равной степени такая ситуация применима и к системам, в которых предполагается ввод команд. В любом случае пользователь должен видеть то, что отображается на экране.

Что же касается остальных элементов, они желательны, хотя и не обязательны (ну разве что графический адаптер, без которого современные системы могут и не работать).

Средства хранения информации

Наконец, один и самых важных классов - устройства хранения информации. Их наличие, будь то внутренние компоненты или внешние носители, просто обязательно. К этому классу относят следующие разновидности:

  • жесткий диск (винчестер);
  • оперативная память;
  • кэш-память;
  • внешние накопители (дискеты, USB-устройства).

Иногда сюда включают также систему BIOS с CMOS-памятью, однако, как уже было сказано выше, это скорее гибридные устройства, которые можно отнести в равной степени к разным категориям.

Безусловно, главное место здесь занимают жесткие диски и «оперативка». Жесткий диск - это аппаратное средство информации (вернее, средство ее хранения), ведь на нем она хранится постоянно, а в оперативной памяти - временно (при запуске или функционировании программ, копировании содержимого в и т. д.).

При выключении компьютера оперативная память автоматически очищается, а вот информация с винчестера никуда не девается. В принципе, сейчас с винчестером конкурируют и съемные носители вроде USB-устройств большой емкости, а вот дискеты и оптические диски уходят в небытие хотя бы по причине их малой емкости и возможности физических повреждений.

Устройства связи

Необязательным классом, хотя в современном мире и очень востребованным, можно назвать и устройства, отвечающие за обеспечение связи как между отдельными компьютерными терминалами, связанными напрямую, так и в сетях (или даже на уровне выхода в Интернет). Здесь из основных устройств можно выделить такие:

  • сетевые адаптеры;
  • маршрутизаторы (модемы, роутеры и т. д.).

Как уже понятно, без них не обойтись при организации сетей (стационарных или виртуальных), при обеспечении доступа во Всемирную паутину. А ведь мало кто сегодня знает, что два компьютера, например, можно соединять посредством кабеля напрямую, как это делалось лет двадцать назад. Конечно, это выглядит несколько непрактично, тем не менее, забывать о такой возможности не стоит, особенно когда нужно копировать большие объемы информации, а подходящего носителя под рукой нет.

Устройства безопасности и защиты данных

Теперь еще об одном типе устройств. Это аппаратные средства защиты, к которым можно отнести, например, «железные» сетевые экраны, называемые еще файрволлами (firewall с английского - «огненная стена»).

Почему-то сегодня большинство юзеров привыкло, что файрволл (он же брэндмауэр) представляет собой исключительно Это не так. При организации сетей с повышенным уровнем безопасности применение таких компонентов не то что желательно, а иногда даже просто необходимо. Согласитесь, ведь программная часть не всегда справляется со своими функциями и может вовремя не отреагировать на вмешательство в работу сети извне, не говоря уже о доступе к хранящейся на жестких дисках компьютеров или серверов.

Взаимодействие программных и аппаратных средств

Итак, аппаратные средства мы вкратце рассмотрели. Теперь несколько слов о том, как они взаимодействуют с программными продуктами.

Согласитесь, у операционных систем, которые и обеспечивают доступ пользователя к вычислительным возможностям ПК, есть свои требования. Современные «операционки» пожирают столько ресурсов, что с устаревшими процессорами, в которых не хватает вычислительной мощности, или при отсутствии необходимого объема оперативной памяти они работать просто не будут. Это, кстати, в равной степени относится и к современным прикладным программам. И, конечно же, это далеко не единственный пример подобного взаимодействия.

Заключение

Напоследок стоит сказать, что аппаратная часть современного компьютера была рассмотрена достаточно кратко, однако сделать выводы о классификации основных элементов системы можно. Кроме того, стоит обратить внимание, что компьютерная техника развивается, а это ведет еще и к тому, что внешних и внутренних устройств разного типа появляется все больше (взять хотя бы виртуальные шлемы). Но что касается базовой конфигурации, в данном случае приведены самые главные компоненты, без которых сегодня невозможно существование ни одной компьютерной системы. Впрочем, здесь по понятным причинам не рассматривались мобильные девайсы, ведь у них устройство несколько отличается от компьютерных терминалов, хотя и имеется довольно много общего.

В продолжение темы:
Office

Восстановление телефона планшета/смартфона Megafon модель V9 на операционной системе Android 2.3 с экраном сенсорный емкостный 16,7 млн цв - 600x1024 dpi из кирпича....